Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Front Cell Infect Microbiol ; 12: 951049, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36439236

RESUMO

According to the World Health Organization, carbapenem-resistant Enterobacteriaceae (CRE) belong to the highest priority group for the development of new antibiotics. Argentina-WHONET data showed that Gram-negative resistance frequencies to imipenem have been increasing since 2010 mostly in two CRE bacteria: Klebsiella pneumoniae and Enterobacter cloacae Complex (ECC). This scenario is mirrored in our hospital. It is known that K. pneumoniae and the ECC coexist in the human body, but little is known about the outcome of these species producing KPC, and colonizing or infecting a patient. We aimed to contribute to the understanding of the rise of the ECC in Argentina, taking as a biological model both a patient colonized with two KPC-producing strains (one Enterobacter hormaechei and one K. pneumoniae) and in vitro competition assays with prevalent KPC-producing ECC (KPC-ECC) versus KPC-producing K. pneumoniae (KPC-Kp) high-risk clones from our institution. A KPC-producing E. hormaechei and later a KPC-Kp strain that colonized a patient shared an identical novel conjugative IncM1 plasmid harboring bla KPC-2. In addition, a total of 19 KPC-ECC and 58 KPC-Kp strains isolated from nosocomial infections revealed that high-risk clones KPC-ECC ST66 and ST78 as well as KPC-Kp ST11 and ST258 were prevalent and selected for competition assays. The competition assays with KCP-ECC ST45, ST66, and ST78 versus KPC-Kp ST11, ST18, and ST258 strains analyzed here showed no statistically significant difference. These assays evidenced that high-risk clones of KPC-ECC and KPC-Kp can coexist in the same hospital environment including the same patient, which explains from an ecological point of view that both species can exchange and share plasmids. These findings offer hints to explain the worldwide rise of KPC-ECC strains based on the ability of some pandemic clones to compete and occupy a certain niche. Taken together, the presence of the same new plasmid and the fitness results that showed that both strains can coexist within the same patient suggest that horizontal genetic transfer of bla KPC-2 within the patient cannot be ruled out. These findings highlight the constant interaction that these two species can keep in the hospital environment, which, in turn, can be related to the spread of KPC.


Assuntos
Enterobacteriáceas Resistentes a Carbapenêmicos , Infecção Hospitalar , Humanos , beta-Lactamases/genética , Enterobacter cloacae/genética , Infecção Hospitalar/epidemiologia , Klebsiella pneumoniae/genética , Enterobacteriáceas Resistentes a Carbapenêmicos/genética , Hospitais
2.
J Glob Antimicrob Resist ; 31: 162-164, 2022 12.
Artigo em Inglês | MEDLINE | ID: mdl-36049730

RESUMO

OBJECTIVES: Enterobacter cloacae complex (ECC) has awakened interest recently because of its increasing resistance to carbapenems codified by several genes all over the globe. Even though there are some sequence types (STs) which represent high-risk clones, there is substantial clonal diversity in the ECC. This work aimed to perform whole-genome sequencing (WGS), genomic analysis, and phylogenetic studies of a Klebsiella pneumoniae carbapenemase (KPC) -producing multidrug-resistant (MDR) ECC isolate from Argentina. METHODS: We analysed the genome of an MDR KPC-producing ECC strain isolated from a urine sample from a patient in a hospital in Argentina. The WGS was done by Illumina MiSeq-I (Illumina, San Diego, CA). The genome was assembled with SPAdes 3.9.0, and annotated with PROKKA, RAST, and Blast. Plasmids were identified with PlasmidFinder. Antibiotic resistance genes were detected using RESfinder, CARD, and Blastn. STs were identified with pubMLST. RESULTS: The strain was identified as Enterobacter hormaechei, an important emerging human pathogen. No ST could be assigned; six of seven alleles of multilocus sequence typing (MLST) were the same as for E. hormaechei ST66, which is a high-risk clone. We found multiple acquired antibiotic resistance genes, including blaKPC-2 in an IncM1 plasmid, and a secretion system VI, which can favour the prevalence of ECC strains while competing with other bacteria. CONCLUSION: Because of its MLST profile being so close to that of E. hormaechei ST66, the acquisition of multiple resistance genes, and the presence of the secretion systems, the potential of this strain for becoming a new high-risk clone cannot be discarded.


Assuntos
Enterobacter cloacae , Infecções por Enterobacteriaceae , Humanos , Enterobacter cloacae/genética , Tipagem de Sequências Multilocus , Infecções por Enterobacteriaceae/microbiologia , Filogenia , Klebsiella pneumoniae/genética , Antibacterianos/farmacologia , Células Clonais
3.
Microb Pathog ; 163: 105378, 2022 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-34982979

RESUMO

Escherichia coli is an important cause of septicemia (SEPEC) and neonatal meningitis (NMEC) in dairy calves. However, the diversity of virulence profiles, phylogroups, antimicrobial resistance patterns, carriage of integron structures, and fluoroquinolone (FQ) resistance mechanisms have not been fully investigated. Also, there is a paucity of knowledge about the virulence profiles and frequency of potential SEPEC in feces from calves with or without diarrhea. This study aimed to characterize the virulence potential, phylogroups, antimicrobial susceptibility, integron content, and FQ-resistance mechanisms in Escherichia coli isolated from calves with meningitis and septicemia. Additionally, the virulence genes (VGs) and profiles of E. coli isolated from diarrheic and non-diarrheic calves were compared between them and together with NMEC and SEPEC in order to identify shared profiles. Tissue and fluid samples from eight dairy calves with septicemia, four of which had concurrent meningitis, were processed for bacteriology and histopathology. Typing of VGs was assessed in 166 isolates from diverse samples of each calf. Selected isolates were evaluated for antimicrobial susceptibility by the disk diffusion test. Phylogroups, integron gene cassettes cartography, and FQ-resistance determinants were analyzed by PCR, sequencing, and bioinformatic tools. Furthermore, 109 fecal samples and 700 fecal isolates from dairy calves with or without diarrhea were evaluated to detect 19 VGs by uniplex PCR. Highly diverse VG profiles were characterized among NMEC and SEPEC isolates, but iucD was the predominant virulence marker. Histologic lesions in all calves supported their pathogenicity. Selected isolates mainly belonged to phylogroups A and C and showed multidrug resistance. Classic (dfrA17 and arr3-dfrA27) and complex (dfrA17-aadA5::ISCR1::blaCTX-M-2) class 1 integrons were identified. Target-site mutations in GyrA (S83L and D87N) and ParC (S80I) encoding genes were associated with FQ resistance. The VGs detected more frequently in fecal samples included f17G (50%), papC (30%), iucD (20%), clpG (19%), eae (16%), and afaE-8 (13%). Fecal isolates displaying the profiles of f17 or potential SEPEC were found in 25% of calves with and without diarrhea. The frequency of E. coli VGs and profiles did not differ between both groups (p > 0.05) and were identical or similar to those found in NMEC and SEPEC. Overall, multidrug-resistant E. coli isolates with diverse VG profiles and belonging to phylogroups A and C can be implicated in natural cases of meningitis and septicemia. Their resistance phenotypes can be partially explained by class 1 integron gene cassettes and target-site mutations in gyrA and parC. These results highlight the value of antimicrobial resistance surveillance in pathogenic bacteria isolated from food-producing animals. Besides, calves frequently shed potential SEPEC in their feces as commensals ("Trojan horse"). Thus, these bacteria may be disseminated in the farm environment, causing septicemia and meningitis under predisposing factors.


Assuntos
Infecções por Escherichia coli , Meningite , Sepse , Animais , Antibacterianos/farmacologia , Bovinos , Farmacorresistência Bacteriana Múltipla/genética , Escherichia coli/genética , Infecções por Escherichia coli/veterinária , Integrons , Sepse/veterinária
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...